
r

[ -=

E,_

L_

The Topology of Three-Dimensional Symmetric Tensor Fields

Yingmei Lavin

Department of Physics

Stanford University

Stanford, CA 94305

Yuval Levy

Department of Aeronautics and Astronautics

Stanford University

Stanford, CA 94305-4035

Lambertus Hesselink

Department of Electrical Engineering

Stanford University

Stanford, CA 94305-4035

1 Abstract

We study the topology of 3-D symmetric tensor fields.

The goal is to represent their complex structure by a simple

set of carefully chosen points and lines analogous to vector

field topology. The basic constituents of tensor topology

are the degenerate points, or points where eigenvalues are
equal to each other. First, we introduce a new method for

locating 3-D degenerate points. We then extract the topo-

logical skeletons of the eigenvector fields and use them for a

compact, comprehensive description of the tensor field. Fi-

nally, we demonstrate the use of tensor field topology for
the interpretation of the two-force Boussinesq problem.

2 Introduction

Second-order tensor fields have applications in many

areas of physics, such as general relativity, fluid flows

and mechanical properties of solids. The wealth of mul-
tivariate information in tensor fields makes them more

complex and abstract than scalar and vector fields. Vi-

sualization provides a means to gain new insights from
these rich data sets.

The most natural way to visualize a symmetric 3-D
tensor field is through its eigensystem, i.e., eigenvalues

and eigenvectors. A continuous representation of the

tensor field is obtained by tracing the trajectories of its

eigenvectors. These trajectories are called hyperstream-

lines [1, 2]. The difficulty with such an approach is how
to capture the structure of the 3-D domain while lim-

iting the number of hyperstreamlines to a minimum in

order to avoid visual clutter. The problem can be sig-

nificantly simplified by taking a topological approach,

similar to the one used in visualizing vector fields [3].
Degenerate points, defined as points where eigenval-

ues are equal to each other, are the basic singularities

underlying the topology of tensor fields. Eigenveetors

never cross each other except at degenerate points. In

the past, research has been conducted in the area of

two-dimensional tensor fields [1, 2]. We live, however,

in a three-dimensional world, and therefore,it is impor-

tant for us to understand the underlying physics of this

world. In this paper, we describe a new method for lo-

cating degenerate points along with the conditions for

classifying them in three-dimensional space. We also
discuss some topological features of three-dimensional

tensor fields, and interpret topological patterns in terms
of physical properties.

3 Theoretical Background

3.1 Deftnitions

Definition 1 (Second-Order Tensor Field) Let

f..(X, Y) be the set of all the linear transformations of

the vector space X into the vector space Y, and let E be

an open subset of R". A second-order tensor field T(£)
defined across E is a mapping T : E _ /:(R m, R m)
that associates to each vector £ of E a linear trans-

formation of R m into itself. If R m is referenced by a

Cartesian coordinate system, T(£) can be represented
by m 2 Cartesian components Tij(£), i,j = 1,...,m,

that transform according to

m

T_'j = Z _iPflJqTvq (1)
p,q=l

under an orthonormal transformation _ = {_ii } of the
coordinate axes. [2]

In a Cartesian coordinate system, a 3-D tensor field
takes the following form:

T(_ =
TH(_,y,z) Tl:(::,y,z) T_(x,y,z) )
T2_(¢,y,z) T_(_,y,z) T_(:_,y,z)
Tsl(x,y,z) T32(x,y,z) Tas(x,y,z)

(2)
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Definition 2 (l:Iyperstreamline) A geometric primitive

of finite size sweeps along the longitudinal eigenvector

field, _t, while stretching in the transverse plane under

the combined action of the two transverse eigenvectors,

_tl and _t2. Hyperstreamlines are surfaces that envelop

the stretched primitives along the trajectories. We refer
to hyperstreamlines as "major", "medium" or "minor"

depending on the corresponding longitudinal eigenvec-

for field that defines their trajectories and color hyper-

streamlines by means of a user-defined function of the

three eigenvalues, usually the amplitude of the longitu-
dinal eigenvalue. [.t]

Definition 3 A degenerate point of a tensor field T :

E --_ £ (Rm,Rm), where E is an open subset ofR m , is
a point _o E E where at least two of the rn eigenvalues

of T are equal to each other. [.t]

3.2 Locating Degenerate Points

A three-dimensional symmetric tensor field (Equa-
tion (2)) has 6 independent variables, therefore various

types of degenerate points may exist. These types cor-
respond to the following conditions:

A1 (_'o) = A2 (zo) > A3 (£o) (3)

A1 (_'o) > A2 (_'o) = A3 (_o) (4)

_1 (_0) = _2 (_0) = _ (_0) (5)

The characteristic equation of a 3-D symmetric tensor

can be expressed in the following form

Tll -,_ T12 Tx3
A (A) = Tt2 T22 - )t T23

Tz3 T23 T_ - ,_

= _,_3 + a,_2 + b,_ + c (6)

where a, b and c are composed of the 6 independent
tensor components. The condition for the existence of

a degenerate point is that both A (,_ (z_)) and its deriva-
tive _ are zero.

A(,_(_))=-A 3+aA _+bA+c=0= -3A _ + 2a)_ + b = 0 (7)

As a result, we obtain the following conditions cor-

responding to Equations (3, 4, and 5) respectively:

2a 3 + 9ab + 2d 3/2
Sl (x, y, z) = 27 + c = 0 (8)

2a 3 + 9ab - 2d 3/2

B2 (x,y,z) = 27 + c = 0

B3(z,y,z) = a_+ 3b = 0

From the expressions for Bs, B_ and Bz, we de-

termine that: B1 (x, y, z) = 0 is a maximum for B_,

B2 (z, y, z) = 0 is a minimum for B_ and B3 (z, y, z) = 0
is a maximum for Bz.

Now the problem is to find extrema in a 3D contin-

uous field from the discrete experimental data sets. On

a 3-D discrete mesh, the search for the various extrema

is conducted by processing one grid cell at a time for
each spatial function.

This method can successfully locate the points of

triple degeneracy. It is especially useful when extended

to locate points of double degeneracy where the local

tensor appears in the diagonal form only when trans-
formed into its eigenvector space.

3.3 Separating Surfaces

For second order tensor fields, in most cases, the

eigenvector fields in the vicinity of a degenerate point

can be described in terms of three types of angular sec-
tors: hyperbolic, parabolic and elliptic sectors. It can

be proved that in a 2-D tensor field, at a simple de-

generate point, there are only one or three hyperbolic

sectors, and no elliptic sectors [2]. Correspondingly, we
call the degenerate point a wedge point when it has only

one hyperbolic sector and possibly one parabolic sector

or a trisector point when it has three hyperbolic sectors
[2].

The classification of degenerate points in 2-D tensor
fields [2, 5] can then be extended to 3-D tensor fields.

The building blocks are the fundamental elements as

defined for 2-D [2]. However, the separating surfaces in

3-D tensor fields have a general structure as they could
appear at various angles. Each of the surfaces is char-

acterized by patterns similar to those of hyperbolic or

parabolic sectors and is bounded by hyperstreamlines

that are emanating from or terminated at the degener-

ate point. Consequently, a point of triple degeneracy
can be classified by the number and type of separating
surfaces surrounding it.

In Figure 1 we show the eigenvector patterns in the
vicinity of a point of triple degeneracy with 4 bound-

ing hyperstreamlines. These hyperstreamlines form 6

hyperbolic separating surfaces. Figure 2 shows a point

of triple degeneracy with only 3 bounding hyperstream-

lines which form 2 hyperbolic separating surfaces and
one parabolic surface.

The trajectories on the surfaces are locally 2-D, while
off the surfaces they are fully 3-D and are determined
by their closest surface.

(9) 4 Topology of 3-D Tensor Fields

We choose the elastic stress tensor induced by
(10) two compressive forces on the top of a semi-infinite
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Figure 1: A point of triple degeneracy with 6 hyperbolic

separating surfaces.

sI

s2

Figure 2: A point of triple degeneracy with 2 hyperbolic

separating surfaces and one parabolic surface.

plane [6] to illustrate the advantages of using topo-

logical skeletons in visualizing 3-D tensor fields. In
principle, hyperstreamline trajectories of the stress ten-
sor show the transmission of forces inside the mate-

rial. Figure 3 shows two hyperstreamlines correspond-

ing to the most compressive eigen-direction, the mi-

nor eigenvector Va- The two forces, indicated by the

arrows, act on the surface at P1 = (0.5,0.0,-1.05)

and P_ = (-0.5, 0.0,-1.05) in the +z direction (down-

ward). The domain of interest (described by the bound-
ing frame) extends between (-1.0,-1.0,-1.114367)

and (1.0, 1.0, 0.0) so it includes the key features of the

stress tensor field, i.e., the degenerate points. It is as-

sumed that the region where z < -1.05 is in tension

and that no stresses are transferred across the plane

z = -1.05. The color of the hyperstreamlines encodes
the magnitude of the most compressive eigenvalue, A3,

while their cross section encodes the magnitude and

direction of the transverse eigenvectors. The hyper-

streamlines converge toward regions of high stresses
where the forces are applied. Note the sharp change

in color and cross section size of the hyperstreamlines

as they approach the acting points of the forces.

Analysis reveals that the tensor field contains two

points of triple degeneracy and that these points re-

side on the surface of the semi-infinite plane. More-

over, the eigenvalues at these points ( the location

of which is given by: D1 = (0.0,0.5,-1.05), D2 =

(0.0,-0.5,-1.05)) are equal to zero. This means that

Figure 3: Stress tensor induced by two compressive

forces; minor hyperstreamlines

Figure 4: Stress tensor induced by two compressive

forces; major hyperstreamlines

these points are stress free, a fact that can be verified by

an examination of the stress equations. We have there-
fore acquired physical insight into the stress tensor field

just by examining a basic topological feature, a point

of triple degeneracy.

Figure 4 shows hyperstreamlines that are obtained

by tracing the major eigenvector field. The location
and direction of the forces are indicated by the arrows

and the location of the points of triple degeneracy are
marked by spheres. The hyperstreamlines are presented
with a constant cross section to avoid visual clutter

resulting from the high eigenvalues in the vicinity of

the points of the acting forces. They are, however,

still color encoded by the major eigenvalue. Each of

the 2 degenerate points has 4 bounding hyperstream-

lines(separatrices), three of which lie on the surface

z = -1.05 in a trisector pattern and the forth, which

is pointing in the +z direction, connects the points of

triple degeneracy, and delineates one of the two symme-

m
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Figure 5: Stress tensor induced by two compressive

forces; minor hyperstreamlines

Figure 6: Stress tensor induced by two compressive

forces; medium hyperstreamlines

try planes (the other goes through the points of action

of the forces).

To further clarify the tensor topology, the skeletons

of the minor and medium hyperstreamlines are pre-

sented in Figures 5 and 6 respectively. We can see

from Figure 5 that the minor hyperstreamlines form a

trisector-point like pattern in the vicinity of the points

of triple degeneracy. They also indicate that a locus

of points of double degeneracy (A2 = A3) connects the

points of triple degeneracy. This is evident from the two

trisector points that lie in the symmetry planes just be-

low the points of triple degeneracy. The existence of the
line of double degeneracy is further verified by noting

the two points of double degeneracy in the skeleton of

the medium hyperstreamlines (Figure 6).

5 Conclusions

In this paper, we applied.novel methods to determine

the topology of tensor data sets, and made use of ad-

vanced representations to determine the significance of

degenerate points and topological skeletons in terms of

physical features.

By extracting the geometric structure of tensor data,
we produce simple and austere depictions that allow

observers to infer the behavior of any hyperstreamlines

in the field. It enables important elements of 3-D stress

distribution to be envisaged without visual clutter.

Degenerate points represent the singularities of the
tensor field. In the 3-D elastic stress tensor case we were

able to identify points of zero stresses with triple de-

generate points and to illustrate transmission of forces
inside the material.
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